Tag Archive

Below you'll find a list of all posts that have been tagged as "devops monitoring"
blogImage

Your 2022 Continuous DevOps Monitoring Solution Needs Pinch Of Artificial Intelligence

DevOps helped technologists save time such drastically that the projects that were barely deployed in a year or more are now seeing the daylight in just months or even weeks. It removed communication bottlenecks, eased the change management, and helped with an end-to-end automation cycle for the SDLC. However, as has been the interesting feature of humanity, any innovation that eases our life also brings with it challenges of its own. Bending over backward, the business leaders now have much more complex customer demands and employee skillset requirements to live up to. Digital Modernization requires rapid and complex processes that move along the CI/CD pipeline with all sorts of innovative QA automation, Complex APIs, Configuration Management Platforms, and Infrastructure-as-a-Code, among other dynamic technology integrations. Such complexities are making DevOps turn on its head due to a serious lack of visibility over the workloads. It is, therefore, time for the companies to put their focus to an essential part of their digital transformation journey – the Monitoring. Continuous Monitoring for the DevOps of Our Times DevOps monitoring is a proactive approach that helps us detect the defects in the CI/CD pipeline and strategize to resolve them. Moreover, a good monitoring strategy can curb potential failures even before they occur. In other words, one cannot hold the essence of DevOps frameworks with their time-to-market benefits without having a good monitoring plan. With the IT landscape getting more and more unpredictable with each day, even DevOps monitoring solutions need to evolve into something more dynamic than its traditional ways. Therefore, it is time for global enterprises and ISVs to adopt Continuous Monitoring. Ideally, Continuous Monitoring or Continuous Control Monitoring in DevOps refers to end-to-end monitoring of each phase in the DevOps pipeline. It helps DevOps teams gain insight into the CI/CD processes for their performance, compliance, security, infrastructure, among others, by offering useful metrics and frameworks. The different DevOps phases can be protected with easy threat assessments, quick incident responses, thorough root cause analysis, and continuous general feedback. In this way, Continuous Monitoring covers all three pillars of a contemporary software – Infrastructure, Application, and Network. It is capable of reducing system downtimes by rapid responses, full network transparency and proactive risk management. There’s one more technology that the technocrats handling the DevOps of our times are keen to work on – Artificial Intelligence (AI). So it wouldn’t be a surprise if the conversations about Continuous Monitoring being fuelled by AI are already brewing up. However, such dream castles need a concrete technology-rich floor. Therefore, we will now look at the possibilities for implementing Continuous DevOps Monitoring Solutions with Artificial Intelligence holding the reins. Artificial Intelligence for Continuous Monitoring As discussed above Continuous Monitoring essentially promises the health and performance efficiency of the infrastructure, application, and network. There are solutions like Azure DevOps Monitoring, AWS DevOps monitoring and more that offer surface visibility dashboards, custom monitoring metrics, hybrid cloud monitoring, among other benefits. So, how do we weave in Artificial Intelligence into such tools and technologies? It mainly comes down to collecting, analyzing, and processing the monitoring data coming in from the various customized metrics. In fact, a more liberal thought can be given even to accommodate setting up these metrics throughout the different phases of DevOps. So, here’s how Artificial Intelligence can help with Continuous Monitoring and empower the DevOps teams to navigate the complex nature of modern applications. Proactive Monitoring AI can enable the DevOps pipeline to quickly analyze the data coming in from monitoring tools and raise real-time notifications for any potential downtime issues or performance deviations. Such analysis might exhaust much more manual workforce than AI-based tools that can automatically identify and update about unhealthy system operations much more frequently and efficiently. Based on the data analysis, they can also help customize the metrics to look for more vulnerable performance points in the CI/CD pipeline for a more proactive response. Resource-Oriented Monitoring One of the biggest challenges while implementing Continuous Monitoring is the variety of infrastructure and networking resources used for the application. The uptime checks, on-premise Monitoring, component health checks are different in Hybrid cloud and Multi-cloud environments. Therefore, monitoring such IT stacks and for an end-to-end DevOps might be a bigger hassle than one can imagine. However, AI-based tools can be programmed to find unusual patterns even in such complex landscapes by tracking various system baselines. Furthermore, AI can also quickly pin-point the specific defective cog in the wheel that might be holding the machinery down. Technology Intelligence The built-in automation and proactiveness of Artificial Intelligence enables it to relax the workforce and the system admins by identifying and troubleshooting the complicated systems. Whether it is a Kubernetes cluster, or a malfunctioning API, AI can support the monitoring administrators to have an overall visibility and make informed decisions about the DevOps apparatus. Such technology intelligence would otherwise require a very unique skillset that might be too easy to hire or acquire. Therefore, enterprises and ISVs can turn to AI for empowering their DevOps monitoring solutions and teams with the required support. Conclusion DevOps is entering the phase of specializations. AIOps, DevSecOps, InfraOps and more are emerging to help the industries with their specific and customized DevOps automation needs. Therefore, it is necessary that the DevOps teams have the essential monitoring resources to ensure minimal to no failures. Continuous Monitoring aided by Artificial Intelligence can provide the robust mechanism that would help the technology experts mitigate the challenges of navigating the complex digital landscape thus, helping the global industries with their digital transformation ambitions.

Aziro Marketing

EXPLORE ALL TAGS
2019 dockercon
Advanced analytics
Agentic AI
agile
AI
AI ML
AIOps
Amazon Aws
Amazon EC2
Analytics
Analytics tools
AndroidThings
Anomaly Detection
Anomaly monitor
Ansible Test Automation
apache
apache8
Apache Spark RDD
app containerization
application containerization
applications
Application Security
application testing
artificial intelligence
asynchronous replication
automate
automation
automation testing
Autonomous Storage
AWS Lambda
Aziro
Aziro Technologies
big data
Big Data Analytics
big data pipeline
Big Data QA
Big Data Tester
Big Data Testing
bitcoin
blockchain
blog
bluetooth
buildroot
business intelligence
busybox
chef
ci/cd
CI/CD security
cloud
Cloud Analytics
cloud computing
Cloud Cost Optimization
cloud devops
Cloud Infrastructure
Cloud Interoperability
Cloud Native Solution
Cloud Security
cloudstack
cloud storage
Cloud Storage Data
Cloud Storage Security
Codeless Automation
Cognitive analytics
Configuration Management
connected homes
container
Containers
container world 2019
container world conference
continuous-delivery
continuous deployment
continuous integration
Coronavirus
Covid-19
cryptocurrency
cyber security
data-analytics
data backup and recovery
datacenter
data protection
data replication
data-security
data-storage
deep learning
demo
Descriptive analytics
Descriptive analytics tools
development
devops
devops agile
devops automation
DEVOPS CERTIFICATION
devops monitoring
DevOps QA
DevOps Security
DevOps testing
DevSecOps
Digital Transformation
disaster recovery
DMA
docker
dockercon
dockercon 2019
dockercon 2019 san francisco
dockercon usa 2019
docker swarm
DRaaS
edge computing
Embedded AI
embedded-systems
end-to-end-test-automation
FaaS
finance
fintech
FIrebase
flash memory
flash memory summit
FMS2017
GDPR faqs
Glass-Box AI
golang
GraphQL
graphql vs rest
gui testing
habitat
hadoop
hardware-providers
healthcare
Heartfullness
High Performance Computing
Holistic Life
HPC
Hybrid-Cloud
hyper-converged
hyper-v
IaaS
IaaS Security
icinga
icinga for monitoring
Image Recognition 2024
infographic
InSpec
internet-of-things
investing
iot
iot application
iot testing
java 8 streams
javascript
jenkins
KubeCon
kubernetes
kubernetesday
kubernetesday bangalore
libstorage
linux
litecoin
log analytics
Log mining
Low-Code
Low-Code No-Code Platforms
Loyalty
machine-learning
Meditation
Microservices
migration
Mindfulness
ML
mobile-application-testing
mobile-automation-testing
monitoring tools
Mutli-Cloud
network
network file storage
new features
NFS
NVMe
NVMEof
NVMes
Online Education
opensource
openstack
opscode-2
OSS
others
Paas
PDLC
Positivty
predictive analytics
Predictive analytics tools
prescriptive analysis
private-cloud
product sustenance
programming language
public cloud
qa
qa automation
quality-assurance
Rapid Application Development
raspberry pi
RDMA
real time analytics
realtime analytics platforms
Real-time data analytics
Recovery
Recovery as a service
recovery as service
rsa
rsa 2019
rsa 2019 san francisco
rsac 2018
rsa conference
rsa conference 2019
rsa usa 2019
SaaS Security
san francisco
SDC India 2019
SDDC
security
Security Monitoring
Selenium Test Automation
selenium testng
serverless
Serverless Computing
Site Reliability Engineering
smart homes
smart mirror
SNIA
snia india 2019
SNIA SDC 2019
SNIA SDC INDIA
SNIA SDC USA
software
software defined storage
software-testing
software testing trends
software testing trends 2019
SRE
STaaS
storage
storage events
storage replication
Storage Trends 2018
storage virtualization
support
Synchronous Replication
technology
tech support
test-automation
Testing
testing automation tools
thought leadership articles
trends
tutorials
ui automation testing
ui testing
ui testing automation
vCenter Operations Manager
vCOPS
virtualization
VMware
vmworld
VMworld 2019
vmworld 2019 san francisco
VMworld 2019 US
vROM
Web Automation Testing
web test automation
WFH

LET'S ENGINEER

Your Next Product Breakthrough

Book a Free 30-minute Meeting with our technology experts.

Aziro has been a true engineering partner in our digital transformation journey. Their AI-native approach and deep technical expertise helped us modernize our infrastructure and accelerate product delivery without compromising quality. The collaboration has been seamless, efficient, and outcome-driven.

Customer Placeholder
CTO

Fortune 500 company