Tag Archive

Below you'll find a list of all posts that have been tagged as "Big Data QA"
blogImage

8 Steps To Foolproof Your Big Data Testing Cycle

Big Data refers to all the data that is generated across the globe at an unprecedented rate. This data could be either structured or unstructured. Comprehending this information and disentangling the different examples, uncovering the various patterns, and revealing unseen connections within the vast sea of data becomes critical and a massively compensating undertaking in reality. Better data leads to better decision making, and an improved way to strategize for organizations, irrespective of their size. The best ventures of tomorrow will be the ones that can make sense of all data at extremely high volumes and speeds to capture newer markets and client base.Why require Big Data Testing?With the presentation of Big Data, it turns out to be especially vital to test the enormous information framework with the utilization of suitable information accurately. If not tried appropriately, it would influence the business altogether; thus, automation becomes a key part of Big Data Testing. Enormous Data Testing whenever done inaccurately will make it extremely hard to comprehend the blunder, how it happened and the likely arrangement with alleviation steps could take quite a while along these lines bringing about mistaken/missing information, and adjusting it is again a colossal test so that present streaming information isn’t influenced. As information is critical, it is prescribed to have a relevant component with the goal that information isn’t lost/debased and proper mechanism should be used to handle failoversBig Data has certain characteristics and hence is defined using 4Vs, namely:Volume: is the measure of information that organizations can gather. It is huge and consequently, the volume of the information turns into a basic factor in Big Data Analytics.Velocity: the rate at which new information is being created, on account of our reliance on the web, sensors, machine-to-machine information is likewise imperative to parse Big Data conveniently.Variety: the information that is produced is heterogeneous; as in it could be in different types like video, content, database, numeric, sensor data and so on and consequently understanding the kind of Big Data is a key factor to unlocking its potential.Veracity: knowing whether the information that is accessible is originating from a believable source is of most extreme significance before unraveling and executing Big Data for business needs.Here is a concise clarification of how precisely organizations are using Big Data:When Big Data is transformed into pieces of data then it turns out to be quite direct for most business endeavors as it comprehends what their clients need, what items are quick moving, what are the desires for the clients from the client benefit, how to accelerate an opportunity to advertise, approaches to lessen expenses, and strategies to assemble economies of scale in an exceedingly productive way. Thus Big Data distinctively leads to big-time benefits for organizations and hence naturally there is such a huge amount of interest in it from all around the world.Testing Big Data:Source: Guru99.comLet us have a look at the scenarios for which Big Data Testing can be used in the Big Data components: –1. Data Ingestion: –This progression is considered as pre-Hadoop arrange where information is created from different sources and information streams into HDFS. In this progression, the analyzers check that information is removed legitimately and information is stacked into HDFS.Ensure appropriate information from different sources is ingested; for example, every required datum is ingested according to its characterized mapping; and information with non-coordinating pattern is not to be ingested. Information which has not coordinated with diagram ought to be put away for details stating the reason.Comparison of source data with data ingested to simply validate that correct data is pushed.Verify that correct data files are generated and loaded into HDFS correctly into desired location.2. Data Processing: –This progression is utilized for approving Map-Reduce employments. Map-Reduce is a concept used for condensing large amount of data into aggregated data. The information ingested is handled utilizing execution of Map-Reduce employments which gives wanted outcomes. In this progression, the analyzer confirms that ingested data is prepared utilizing Map-Reduce employments and approve whether business rationale is actualized accurately.Data Storage: –This progression is utilized for putting away yield information in HDFS or some other stockpiling framework, (for example, Data Warehouse). In this progression the analyzer checks that yield information is effectively produced and stacked into capacity framework.Validate information is amassed post Map-Reduce Jobs.Verify that right information is stacked into capacity framework and dispose of any middle of the road information which is available.Verify that there is no information defilement by contrasting yield information and HDFS (or any capacity framework) information.The other types of testing scenarios a Big Data Tester can do is: –4. Check whether legitimate ready instruments are actualized, for example, Mail on alarm, sending measurements on Cloud watch and so forth.5. Check whether exceptions or mistakes are shown legitimately with suitable special case message so tackling a blunder turns out to be simple.6. Performance testing to test the distinctive parameters to process an arbitrary lump of vast information and screen parameters, for example, time taken to finish Map-Reduce Jobs, memory use, circle use and different measurements as required.7. Integration testing for testing complete work process specifically from information ingestion to information stockpiling/representation.8. Architecture testing for testing that Hadoop is exceptionally accessible all the time and failover administrations are legitimately executed to guarantee information is handled even if there should arise an occurrence of disappointment of hubs.Data Storage – HDFS (Hadoop Distributed File System), Amazon S3, HBase.Note: – For testing it is very important to generate data that covers various test scenarios (positive and negative). Positive test scenarios cover scenarios which are directly related to the functionality. Negative test scenarios cover scenarios which do not have direct relation with the desired functionality.Tools used in Big Data TestingData Ingestion – Kafka, Zookeeper, Sqoop, Flume, Storm, Amazon Kinesis.Data Processing – Hadoop (Map-Reduce), Cascading, Oozie, Hive, Pig.

Aziro Marketing

EXPLORE ALL TAGS
2019 dockercon
Advanced analytics
Agentic AI
agile
AI
AI ML
AIOps
Amazon Aws
Amazon EC2
Analytics
Analytics tools
AndroidThings
Anomaly Detection
Anomaly monitor
Ansible Test Automation
apache
apache8
Apache Spark RDD
app containerization
application containerization
applications
Application Security
application testing
artificial intelligence
asynchronous replication
automate
automation
automation testing
Autonomous Storage
AWS Lambda
Aziro
Aziro Technologies
big data
Big Data Analytics
big data pipeline
Big Data QA
Big Data Tester
Big Data Testing
bitcoin
blockchain
blog
bluetooth
buildroot
business intelligence
busybox
chef
ci/cd
CI/CD security
cloud
Cloud Analytics
cloud computing
Cloud Cost Optimization
cloud devops
Cloud Infrastructure
Cloud Interoperability
Cloud Native Solution
Cloud Security
cloudstack
cloud storage
Cloud Storage Data
Cloud Storage Security
Codeless Automation
Cognitive analytics
Configuration Management
connected homes
container
Containers
container world 2019
container world conference
continuous-delivery
continuous deployment
continuous integration
Coronavirus
Covid-19
cryptocurrency
cyber security
data-analytics
data backup and recovery
datacenter
data protection
data replication
data-security
data-storage
deep learning
demo
Descriptive analytics
Descriptive analytics tools
development
devops
devops agile
devops automation
DEVOPS CERTIFICATION
devops monitoring
DevOps QA
DevOps Security
DevOps testing
DevSecOps
Digital Transformation
disaster recovery
DMA
docker
dockercon
dockercon 2019
dockercon 2019 san francisco
dockercon usa 2019
docker swarm
DRaaS
edge computing
Embedded AI
embedded-systems
end-to-end-test-automation
FaaS
finance
fintech
FIrebase
flash memory
flash memory summit
FMS2017
GDPR faqs
Glass-Box AI
golang
GraphQL
graphql vs rest
gui testing
habitat
hadoop
hardware-providers
healthcare
Heartfullness
High Performance Computing
Holistic Life
HPC
Hybrid-Cloud
hyper-converged
hyper-v
IaaS
IaaS Security
icinga
icinga for monitoring
Image Recognition 2024
infographic
InSpec
internet-of-things
investing
iot
iot application
iot testing
java 8 streams
javascript
jenkins
KubeCon
kubernetes
kubernetesday
kubernetesday bangalore
libstorage
linux
litecoin
log analytics
Log mining
Low-Code
Low-Code No-Code Platforms
Loyalty
machine-learning
Meditation
Microservices
migration
Mindfulness
ML
mobile-application-testing
mobile-automation-testing
monitoring tools
Mutli-Cloud
network
network file storage
new features
NFS
NVMe
NVMEof
NVMes
Online Education
opensource
openstack
opscode-2
OSS
others
Paas
PDLC
Positivty
predictive analytics
Predictive analytics tools
prescriptive analysis
private-cloud
product sustenance
programming language
public cloud
qa
qa automation
quality-assurance
Rapid Application Development
raspberry pi
RDMA
real time analytics
realtime analytics platforms
Real-time data analytics
Recovery
Recovery as a service
recovery as service
rsa
rsa 2019
rsa 2019 san francisco
rsac 2018
rsa conference
rsa conference 2019
rsa usa 2019
SaaS Security
san francisco
SDC India 2019
SDDC
security
Security Monitoring
Selenium Test Automation
selenium testng
serverless
Serverless Computing
Site Reliability Engineering
smart homes
smart mirror
SNIA
snia india 2019
SNIA SDC 2019
SNIA SDC INDIA
SNIA SDC USA
software
software defined storage
software-testing
software testing trends
software testing trends 2019
SRE
STaaS
storage
storage events
storage replication
Storage Trends 2018
storage virtualization
support
Synchronous Replication
technology
tech support
test-automation
Testing
testing automation tools
thought leadership articles
trends
tutorials
ui automation testing
ui testing
ui testing automation
vCenter Operations Manager
vCOPS
virtualization
VMware
vmworld
VMworld 2019
vmworld 2019 san francisco
VMworld 2019 US
vROM
Web Automation Testing
web test automation
WFH

LET'S ENGINEER

Your Next Product Breakthrough

Book a Free 30-minute Meeting with our technology experts.

Aziro has been a true engineering partner in our digital transformation journey. Their AI-native approach and deep technical expertise helped us modernize our infrastructure and accelerate product delivery without compromising quality. The collaboration has been seamless, efficient, and outcome-driven.

Customer Placeholder
CTO

Fortune 500 company